Todayās Ford engines, including the amazing Coyote 5.0-literĀ V8, almost make an enthusiast forget the struggles of modifying a traditional small-block Ford. Not so long ago,Ā stock V8 engines produced just 170-250 horsepower, and through power-adderĀ use, racers tried to double or triple the output. Technology advancements have placed the ability to make big power in the hands of many, along with a strong aftermarket supplying parts with enhanced materials, and designed so power can be increased without the fear of parts failure.
Many of todayās Mustang and Ford fans cut their teeth modifying the 5.0-liter H.O. engine, which made its mark in the mid-1980s. Producing just 225 horsepowerĀ (suitable output for the era), the five-point-oh was the catalyst for many a performance build. But racers quickly realized the limit of a production block.
So, whatās the alternative? The solution is easy, as companies likeĀ Dart Machinery and World Products have developed aftermarket blocks with the racer and street enthusiast in mind. Not only are the aftermarket offerings more robust, they’re engineered for performance, not for assembly line production. They feature stronger iron alloy (or aluminum) material, better oiling, andĀ provideĀ much larger displacement potential when paired with the corresponding rotating assembly.
Looking for a solid foundation for a small-block Ford build? Bank on blocks from Dart Machinery (left) and World Products (right) for their use of premier materials, unrivaled durability, and up-to-date design, not to mention a variety of options to align with nearly any performance and budgetary requirements.
People often say horsepower comes from the cam, heads, and intakeāand certainly, adequate breathing is important. But what good is an expensive, well-thought-out induction system if poor ring seal, blown head gaskets, or wiped out bearings occur because of deficiencies in the block design? In other words, a winning engine starts with a solid foundation, and that means having a high-quality engine block.
Stock Vs. Not Stock
The engine block is the most extreme-duty component in a vehicle. It must withstand the immense rotational force of the crankshaft spinningāthe up and down forces of the pistons and the rings dragging the cylinder walls–while the deck must remain flat to seal the combustion chambers and contain the incredible pressure developed during the compression and combustion cycles. It also has toĀ survive the heat generated by friction and combustion, and it must be constructed to contain passages for oiling and water jackets for coolant. And, harmonics created by the cam and valvetrain haven’t even been mentioned yet. The block needs toĀ be stiff enough to handle all this stress, but soft enough to be machined. Thatās a tall order from one single component. If the block fails it will be an expensive proposition, so selecting the correct product for the application is important.

One of the more affordable options is Dartās SHP block, which accepts factory roller lifters and retainer. Features include Siamese bores (max bore size 4.125-inch), scalloped water jackets, priority main bearing oiling, steel four-bolt main caps on numbers two, three and four mains and can accept most stock components and accessories. As with all its blocks, Dart can finish-prep and machine the block so it’s ready for assembly upon delivery.
With a race block youāll see improved ring seal and even gain power in low-horsepower applications. – Jack McInnis, World Products
In the case of the small-block Ford Windsor (including 302 and 351W), that limit is about 300-500 horsepowerĀ depending on the block youāre using. Fordnatics recognize 1969-1970 Boss 302 blocksĀ and most 351 blocks as being stronger than the 5.0 H.O. (1985-95), but they still donāt compare to a modern aftermarket block.
(Left) At the other end of the spectrum is Dartās aluminum block. Cast from virgin 355-T61 aluminum alloy, these blocks save over 100 pounds over iron blocks, and feature all the engineering and performance required to achieve the highest horsepower levels. (Right) The aluminum block sports four-bolt billet steel main caps, and you can see the three center caps have splayed outer bolts. You can select between two crankshaft main bearing diameters--302 (2.249-inch) or 351C-style (2.749-inch) along with either a small- or large-journal camshaft. These blocks also accept a standard one-piece rear main seal.
āIn the old days, power level exceeded the capabilities of the material,ā states Disk Maskin of Dart Machinery. āThe goal is to achieve a tensile strength so the block doesnāt crack, and then we design it to maintain ring seal. When it comes to making power, ring seal is everything–period,ā he exclaims.

This is a stock late-model Ford 5.0 assembled short-block. These thin-wall cast blocks were installed in Mustangs from 1985-1995, along with some trucks and SUVs, and did not offer much power handling capability whatsoever once the RPM and horsepower levels were elevated.
Thereās an endless list of classes and combinations being built by todayās enthusiasts and both Dart Machinery and World Products meet or exceed the challenge of building blocks for these difficult requirements, some of which can surpass 2,000 horsepower. Each manufacturer offers a full complement of Ford Windsor blocks, from the budget-minded to the most extreme. Dartās line includes the SHP, Iron Eagle Sportsman, Iron Eagle, Cast Aluminum and Billet Aluminum. World offers its Man OāWar series in a variety of configurations.
Ford fans are always seeking increased displacement, which means larger bores and longer stroke crankshafts. Years ago, a 331 or 347 was considered big cubes for an 8.2-deck block (408 was it for a 351W), but thatās small potatoes these days. Cylinder bores in the Dart and World blocks are capable of being finished from 4.000-inch to 4.200-inches. This can produce 360-plus cubic inches on the 8.2 and on the tall-deck Windsor upwards of 470 cubic inches is possible from a small-block.
Strength, Durability and Material
Factory Block Limitations
Despite goodies like a roller cam, efficient long-runner intake, factory tubular headers, and EFI, the 5.0-literĀ was based around a thin-wall cast block thatās prone to cracking. Push one too hard and there will eventually beĀ cracks in the main webbing and the lifter galley,Ā as shown in this extreme example. High-RPM use regularly past 6,500-7,000 rpm will also cause this in short order.
Failures develop because the material is thin and the block lacks features needed for increased cylinder pressure and RPM. The small two-bolt main caps are weak and tend to walk (a termĀ used to describe movement) and that can eat bearings and create vibration and harmonics that leads to cracks. Furthermore, these blocks have trouble maintaining cylinder head sealing, especially in boosted applications due to the small head bolts and thin deck surface.
āWe make the blocks as strong as we can and we donāt leave anything on the table,ā Maskin says. āThe blocks are primarily made of iron used in the diesel industry and we have better machining processes–we donāt use a transfer line. Essentially, we do fullyĀ custom machining on our blocks.”
Dart’s SHP (Special High Performance) block can be used with Ford hydraulic roller lifters and lifter retainer to make swapping from a factory block simpler, while the Iron Eagle series (including the billet aluminum variant) offers extreme duty capability.
World Products has a complete line of Man OāWar blocks that have proven successful on the street and on the track. They’reĀ known for their Man O’War racing blocks that recently went through a complete resurrection.
āWe just completed a heavy-duty revamp of our blocks. We retooled and madeĀ significant changes, including an upgraded material rated to 50,000 psi,” says World’s Jack McInnis.

Factory blocks are limited by the two-bolt main caps and thin casting. The weak mains cause cap walk as the harmonics increase with power and RPM, which leads to cracks in the main web area and the lifter valley.
āStock blocks are generally cheaper to produce and made from thinner material.Ā Race blocks are subject to greater stress from increased compression and cylinder pressure, increased RPM,Ā and greater heat and friction. You want to avoid including cracking and ācreep,ā which is a form of material deformation over time. With a race block youāll see improved ring seal and even gain power in low-horsepower applications,ā McInnis says.

World’s Man OāWar has far more material in the main webbing area that surrounds the crank, as well as four-bolt main caps. The cylinders extend .500-inch further into the crankcase, which gives the pistons stability at BDC, and the bores are notched to clear the rotating assembly. It also uses ARP 7/16-inch fasteners to leave more metal in the critical areas.
āWe also thickened the main webbing area, the area that surrounds the main caps and secures the crankshaft,” McInnis continues. “Number oneĀ main area thickness is increased by .080-inch and two, three, and fourĀ are .030-inch thicker. We also went from half-inch main bolts to 7/16-inch ARP hardware [bolts or studs can be ordered].”
It’s an interesting change, to drop the fastener dimension rather than increasing it, but there’s solid thoughtĀ behind the move.
“You generally donāt see fasteners fail–you see the web area in the block fail,ā McInnisĀ notes.
World claims by reducing the hardware size slightly, but using a stronger fastener, they can leave more material in the block to increase overall strength while retaining clamping ability and preventing cap walk. In addition, virtually all aftermarket blocks feature four-bolt main caps that can be nodular iron or billet steel.
Dart’s SHP and Iron Eagle Sportsman and Iron Eagle Ford blocks have the benefit of receiving some of the engineering advancements Maskin discovered while building Pro Stock engines years ago.
āOur blocks feature Siamese bores for addedĀ strength. We primarily use a material found in the diesel industry, And we use (and perform) custom machiningĀ on each block. We also have aluminum versions that provide good durability and save 100 pounds over the iron block. If done properly, an aluminum blockĀ can make as much power as an iron block,ā says Maskin.
Pipeline of Oil
Proper oiling is a major concern of any engine builder or racer. Adequate lubrication for the rotating parts, the cylinder walls, and the valvetrain must exist. The oil bath also provides a cooling effect within the engine, as it absorbs heat created by friction. To work properly, the block mustĀ have provisions to feed the proper amount of oil to the cylinder walls, bearings and valvetraināand for the oil to drain back to the pan.
Racing engines have different oiling requirements than production engines. There are many ways to modify the oil system for improved performance, such as increased or decreased oil pressure and also modifying the oilĀ volume flowing through the block. Driving the oil pump requires power and causes drag on the engine, so the racer mustĀ take care to spinĀ the pump relative to the application’s requirements. How oiling system modifications are done ultimately depends on class rules, the type of racing, budget, bearing clearances, and the type of oil used. Each of these factors is interdependent with the others and mustĀ be carefully considered before modifications are made.
(Left) A cutaway look at the priority oiling at the front of a Man OāWar block. Both Dart and World have this feature, which oils the crankshaft first and then the camshaft. (Right) Another area where stock blocks suffer is in deck thickness. A solid deck is required to maintain proper sealing of the cylinder heads and to provide maximum ring sealing. These aftermarket blocks all feature increased thickness in the deck area, shown in this cutaway of the Man O'War.
The typical racer uses a wetĀ sump system with an internal oil pump. In the Ford small-block, the oil pump sits in the front of the block so oil travels from the pickup in the pan, into the pump, through the filter,Ā and into the block. In a production block, oil is first directed to the cam and then to the crankshaft. Both Dart and World change the oil circuitry to send the oil to the mains first.
āOur blocks are setup with priority oiling to the main bearings,ā McInnis says. āWe also enlarged the oilĀ passages in the main galley and the supply from the filter pad. Thatās where the restrictions are.ā
Seal It Up
When it comes to making power, ring seal is everything. Period! – Dick Maskin, Dart Machinery
The improvements found in all of these blocks also provide more stability in the deck area. When the cylinder head is stabilized, the racer is less likely to find loose intake manifold bolts during maintenance between rounds. The strong cylinder walls meanĀ the cylinders remain round and true; this is a critical area for power,Ā as an out-of-round cylinder can rob a ton of power as ring seal fluctuates. Increased thickness is also found in the oil pan rails, providing stability to keep the oil pan gasket sealed.

World Products offers the Man OāWar, which is made from a 50,000 psi iron alloy. It has far more material in the main webbing area that surrounds the crank as well as four-bolt main caps. In this photo you can also see how the cylinders extend .500-inches further into the crankcase, which gives the pistons stability at Bottom Dead Center. The bores are also notched to clear the rotating assembly.
Displacement

This cut-away shows Siamese bores, meaning the bores are connected. This adds a great amount of stability to the bore. When a bore is out of round even by a small amount, ring seal and output suffers.
Adding more cubic inches to an engine offers an easy route to increased power–this extra displacement comes by increasing the bore size, the stroke, or both. Boring a cylinder increases the diameter of each bore, and requires careful machining of the cylinder bores.Ā A longer stroke requires a crankshaft with the connecting rod throws moved further from the crank centerlineĀ and a properly sized connecting rod and piston. This is advantageous as long as the piston can remain stable. Increasing the stroke on 8.200-inch deck height factory blocks will cause the piston skirt to come out of the bore at BDC.Ā Aftermarket blocks have longer bores that extend deeper into the crankcase.
Stroking an engine has a greater effect of increasing displacement, but both are importantĀ to performance. When it comes to the small-block Ford engine, having the ability to stuff more displacement in the stock architecture is also helpfulĀ as this allows racers to retain many parts they already own, such as the oil pan, distributor, intake manifold,Ā and headers.

Big displacement is the trend, and certain blocks from Dart and World blocks can go as big as 470-plus cubic inches. This is possible by usingĀ cylinder bores that are nearly 1/4-inch larger than the stock design. The maximum bore dimension of the Man O’War is 4.200-inches, which is huge for a small-block Windsor Ford. Dart’s Iron Eagle has a recommended maximum bore dimension of 4.185-inch.
Dart and World offer a wide range of aftermarket Ford blocks with varying deck heights so the enthusiast can select between a multitude of bore and stroke combinations. Most common are the 8.200-inch (302-based) and 9.500-inch (351-based) deck height blocks, but there are also 8.700-inch and 9.200-inch deck height blocks available.
A major part of the displacement equation comes from the crankshaft, and thatās where things get funky with the small-block Ford. There are many options for stroke and main journalĀ diameter. Factory 302 engines use a small 2.248-inch journal size, where the production 351W uses a huge 3.000-inch journal.
The larger main journal adds strength to the crankshaft, but it also adds weight and increased bearing speed, which is not so good. The larger size means thereās more area, more RPM,Ā and more friction. The compromise is the 351 Cleveland journal size, which is 2.749-inches; ready-to-go aftermarket cranks are available in a variety of stroke lengths with either main journal size.

Hereās a cutaway look at the priority oiling at the front of a Man OāWar block. Both Dart and World have this feature, which oils the crankshaft first and then the camshaft.
Production 302 and 351 engines use the same 4.000-inch bore dimension–far smaller than the 4.185-inch (Dart) and 4.200-inch (World) maximum bore dimensions. Itās important to note that the safe overbore limit on most factory Ford blocks is .030-inch. Stock engines can be taken past .030-inch overbore in some instances, but it’s not typically recommended on a stock, thin-wall casting,Ā as cylinder wall strength is compromised.

Dart offers four levels of the popular Ford Windsor block: SHP, Iron Eagle Sportsman, Iron Eagle, and aluminum. Shown is the 9.5-inch deck height Iron Eagle.
A Bevy Of Choices For Ford Owners
So, how big can a small-block FordĀ go? With a 4.200-inch bore and 4.000-inch stroke, oneĀ can be taken to 470 cubic inches.Ā Of course, finding maximumĀ power with larger displacements requires sufficient camshaft and induction, or copious levels of boost.

Engine block or eye candy? This is Dartās billet aluminum block, used when you need ultimate strength and reduced weight. Keep in mind that billet blocks are typically “dry”–no coolant flows through them. They’re typically used in no-holds-barred, upper-echelon racing classes only, where the engine runs for a minute or two at a time.
The small-block Ford engine has proven itself in many race classes over the years, from NASCAR to NHRA, to the trendsetters running the platform in NMRA and NMCA heads-up drag racing competition. These racers are using blocks like these from Dart and World to achieve incredible performances. There are many specifications and dimensions when it comes to aftermarket Ford small-blocks, and Dart Machinery and World Products have gone to great lengths to supply Ford enthusiasts with a variety of blocks to fit their requirements needs, whether it’s forĀ a mild rebuild or an all-out race engine.